วันพุธที่ 21 กันยายน พ.ศ. 2559

คาร์ล ฟรีดริช เกาส์







                                                                  คาร์ล ฟรีดริช เกาส์

โยฮันน์ คาร์ล ฟรีดริช เกาส์ นักคณิตศาสตร์ชาวเยอรมนี เกิดเมื่อวันที่ 30 เมษายน ค.ศ. 1777 เสียชีวิต 23 กุมภาพันธ์ ค.ศ. 1855 เป็นตำนานหนึ่งในนักคณิตศาสตร์ผู้ยิ่งใหญ่ที่สุดในประวัติศาสตร์ ได้รับฉายาว่า “เจ้าชายแห่งคณิตศาสตร์” (Prince of Mathematics)เนื่องจากอุทิศผลงานในทุก ๆ ด้านของคณิตศาสตร์ในยุคสมัยของเขา นอกจากนี้เกาส์ยังมีผลงานสำคัญทางด้านฟิสิกส์ โดยเฉพาะด้านดาราศาสตร์อีกด้วย

ผลงานเกี่ยวกับทฤษฎีจำนวน

ผลงานสำคัญของเกาส์ในด้านทฤษฎีจำนวน คือหนังสือที่ตีพิมพ์ในปี พ.ศ. 2344 (ค.ศ.1801) ชื่อว่าDisquisitiones Arithmeticae เนื้อหาในหนังสือเล่มนี้ เกี่ยวกับการนำเสนอ เลขคณิตมอดุลาร์ (modular arithmetic) ที่เป็นระบบจำนวนภายใต้การหารแบบเหลือเศษ และบทพิสูจน์แรกของทฤษฎี ส่วนกลับกำลังสอง (quadratic reciprocity) ซึ่งในปัจจุบันมีบทพิสูจน์ที่แตกต่างกันหลายแบบ แต่เกาส์เป็นคนแรกที่พิสูจน์ทฤษฎีบทนี้ได้ ในปี พ.ศ. 2339 (ค.ศ. 1796)

เรขาคณิตนอกแบบยุคลิด

ที่ผ่านมาจะเห็นว่า งานที่ตีพิมพ์ของเกาส์แต่ละอย่างนั้น ส่งผลกระทบต่อวงการวิชาการมากมายมหาศาล แต่อย่างไรก็ตาม งานของเกาส์ที่ไม่ถูกตีพิมพ์ก็ยิ่งใหญ่ไม่แพ้กัน ยกตัวอย่างเช่น เกาส์ได้ค้นพบ เรขาคณิตนอกแบบยุคลิด (non-Euclidean geometries) ซึ่งส่งผลกระทบสำคัญต่อจินตนาการของมนุษย์ต่อธรรมชาติและโครงสร้างจักรวาล เทียบเคียงได้กับการปฎิวัติของโคเปอร์นิคัส ในสาขาดาราศาสตร์เลยทีเดียว เนื่องจากตั้งแต่สมัยยุคลิด จนกระทั่งถึงสมัยของเกาส์นั้น สัจพจน์ทั้งหลายในเรขาคณิตแบบยุคลิด ถือว่าเป็นความจริงที่หลีกเลี่ยงไม่ได้ แต่อย่างไรก็ตาม นักคณิตศาสตร์รุ่นถัดมาจนถึงเกาส์ก็สงสัยการกำหนด สัจพจน์บางอย่างของ
ยุคลิดมาตลอด โดยเฉพาะสัจพจน์เส้นขนาน ที่กล่าวว่ากำหนดเส้นตรงหนึ่งเส้น และกำหนดจุดหนึ่งจุดที่ไม่ได้อยู่บนเส้นตรงนั้น จะมีเพียงเส้นตรงเส้นเดียวที่ผ่านจุดนั้นและขนานกับเส้นตรงเส้นแรก นักคณิตศาสตร์ได้สงสัยมานานว่า ทำไมเรื่องเส้นขนานนี้ถึงต้องเป็นสัจพจน์ เนื่องจากสัจพจน์ควรจะเป็นอะไรที่เข้าใจได้ง่ายๆ เช่น สัจพจน์ของจุด เป็นต้น เรื่องเส้นขนานที่ค่อนข้างซับซ้อนนั้น ควรที่จะเป็นทฤษฎีบท คือสามารถพิสูจน์ได้ด้วยสัจพจน์ที่เป็นมูลฐานอื่นๆ มากกว่าที่จะเป็นสัจพจน์เสียเอง ยุคลิดเองก็ดูลังเลกับสัจพจน์ข้อนี้ โดยได้ให้เป็นสัจพจน์ข้อสุดท้ายในระบบเรขาคณิตของเขา อย่างไรก็ตามไม่มีนักคณิตศาสตร์คนใดสามารถพิสูจน์สัจพจน์เส้นขนานนี้ได้สำเร็จ โดยจากสมุดบันทึกของเกาส์ที่พบ เราทราบว่า เกาส์เองก็ได้ลองพยายามพิสูจน์ประเด็นนี้ เมื่ออายุ 15 ปี และก็ล้มเหลวเช่นเดียวกันกับคนอื่นๆ อย่างไรก็ตาม ความล้มเหลวของเกาส์ต่างจากคนอื่นๆ ตรงที่ในเวลาถัดมาเกาส์เริ่มตระหนักว่า ระบบเรขาคณิตแบบยุคลิด ไม่ใช่ระบบเรขาคณิตเพียงระบบเดียวที่เป็นไปได้ เกาส์คิดค้นประเด็นนี้อยู่หลายปี และในปี พ.ศ. 2363 (ค.ศ. 1820) เกาส์ก็ได้ทฤษฎีบทเต็มรูปแบบของ เรขาคณิตนอกแบบยุคลิด (ซึ่งชื่อนี้เป็นชื่อที่เกาส์ตั้งเอง อ้างอิงจาก Werke, vol. VIII, pp. 159-268, 1900) อย่างไรก็ตาม เกาส์ไม่ได้เปิดเผยผลงานชิ้นนี้ต่อสาธารณะ จนกระทั่งในปี พ.ศ.2372 (ค.ศ. 1829) และ พ.ศ. 2375 (ค.ศ. 1832) ซึ่งโลบาชอฟสกี (Lobachevsky)นักคณิตศาสตร์ชาวรัสเซีย และ ยาโนส โบลยาอี (Johann Bolyai) นักคณิตศาสตร์ชาวฮังการี ได้ตีพิมพ์งานชิ้นนี้ (โดยไม่ขึ้นต่อกัน)เช่นเดียวกัน พ่อของโบลยาอี ซึ่งเป็นเพื่อนของเกาส์ ได้นำข่าวดีของลูกชายตัวเองมาเล่าให้เกาส์ฟัง และก็ต้องตกตะลึง เมื่อเกาส์ไปรื้องานเก่า ๆ ในลังของตัวเองมาให้ดู โดยโบลยาอีผู้ลูกถึงกับพูดว่า “ผมรู้สึกเหมือนเดินอยู่ในฝ่ามือของยักษ์ใหญ่” เหตุผลที่เกาส์ไม่ยอมตี พิมพ์งานของตัวเองนั้นเรียบง่ายมาก เพราะเนื่องจากในเยอรมันสมัยนั้น มีนักปรัชญาที่ยิ่งใหญ่ที่สุดคนหนึ่งคือ อิมมานูเอิล คานท์ อยู่ โดยคานท์ได้คิดและวางหลักการต่างๆ เกี่ยวกับความรู้มนุษย์ไว้มากมาย และคนทั่วไปก็ยอมเชื่อฟังแนวคิดของคานท์ โดยคานท์ได้ให้ความเห็นไว้ว่า ระบบเรขาคณิตของยุคลิด เป็นความเป็นไปได้เพียงหนึ่งเดียวในการคิดเกี่ยวกับเรื่องของ มิติอวกาศ หรือ ปริภูมิ (space) ซึ่งเกาส์ทราบเป็นอย่างดีว่าความคิดนี้ผิด แต่ด้วยเกาส์เป็นคนที่มีบุคลิกรักสันโดษและความสงบ เกาส์จึงตัดสินใจที่จะไม่ไปโต้เถียงเรื่องนี้ ซึ่งเป็นเรื่องใหญ่มาก กับเหล่านักปรัชญาที่สนับสนุนแนวคิดของคานท์

ที่มา http://www.geocities.com/dej_555/01.html


เนื้อหาที่เกี่ยวข้อง: https://panumard130.wordpress.com/free-style/%E0%B8%9B%E0%B8%A3%E0%B8%B0%E0%B8%A7%E0%B8%B1%E0%B8%95%E0%B8%B4%E0%B8%99%E0%B8%B1%E0%B8%81%E0%B8%84%E0%B8%93%E0%B8%B4%E0%B8%95%E0%B8%A8%E0%B8%B2%E0%B8%AA%E0%B8%95%E0%B8%A3%E0%B9%8C/

2 ความคิดเห็น: